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Abstract

Antiplane shear deformation of perfectly bonded wedges as well as bonded wedges with an interface crack are

studied in this paper. The solution of governing di�erential equations is accomplished by means of the Mellin
transform. For two edge-bonded isotropic wedges with perfect bonding along the common edge, closed form
solutions are obtained for stress ®elds and analytical relations are given for the strength of singularity at the apex.

However, for bonded wedges with an interfacial crack, ®rst it is necessary to express the traction-free condition of
the crack faces in the form of a singular integral equation which is done in this paper by describing an exact
analytical method. The resultant singular integral equations are then solved analytically and the obtained results
including the stress intensity factors at the crack tips are plotted. A comparison of the results in the special cases

shows a complete agreement with those cited in the literature. However, when the crack tip coincides with the
wedge apex, a strength of singularity of unity has been observed. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The stress analysis in a wedge with in®nite radius has been considered by various investigators.

Tranter (1948), by employing the Airy stress function and using the Mellin transform, solved the plane

elasticity problem of an in®nite isotropic wedge. Then, Williams (1952) studied the stress singularities at

the wedge apex by using the eigenfunction expansion method. Later on, in a series of papers, Bogy

(1972) and Kuo and Bogy (1974a, 1974b) employed a complex function representation of the solution in

conjunction with a generalized Mellin transform to analyze stress singularities in an anisotropic wedge.

The stress distribution in a wedge with ®nite radius subjected to antiplane shear deformation was

obtained by Kargarnovin et al. (1997). They also extracted the strength of stress singularities at the

wedge apex, under di�erent boundary conditions, as a function of apex angle. Afterwards, Shahani (in
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an accepted for publication paper), by de®ning some complex integral transformations, solved the
antiplane deformation problem of anisotropic ®nite wedges and derived analytical relations for the
strength of stress singularities in terms of `transformed apex angles'.

The problem of ®nding the stress singularities at the apex of a bi-material wedge was examined by
Bogy (1971) and Dempsey and Sinclair (1979, 1981), for the in-plane problems. Ma and Hour (1989)
studied the asymptotic behaviour of the stress components in the vicinity of the apex of a bi-material
wedge. They restricted themselves to the derivation of the equation of the poles in the Mellin transform
domain and analytical relations for the orders of stress singularities in special cases.

The stress singularities due to the existence of an edge crack in simple and bi-material wedges were
considered by Kargarnovin et al. (1997), Ting (1986) and Ma and Hour (1989). They found that the
analysis of the problem of an edge crack was the special case of their analysis of a simple isotropic or a
bi-material wedge.

Unlike the analytical and practical interest, the problem of bonded wedges with an interface crack
was not the subject of the investigations made on bonded materials, because of analytical di�culties. An
analytical approach to this problem, under antiplane shear loading, was done by Erdogan and Gupta
(1975). The major task of this paper is to express the prescribed boundary condition on the crack region
in the form of a singular integral equation. For this purpose, dual integral equations were extracted
from the relations which were resulted from the solution of the equilibrium equations and their related
boundary conditions, by utilizing the Mellin transform. Then, using several series expansions on
di�erent terms of the integrand and adding and subtracting the leading terms of these series to and from
the integrand, the attempt was made to extract an equation in the form of a standard singular integral
equation. This singular integral equation was then solved with an approximate numerical method.

The analysis of perfectly bonded wedges as well as bonded wedges with an interface crack, under
antiplane shear loading is the subject of the present investigation. The antiplane shear tractions act on
the edges of the bi-material wedge and a traction-free condition is imposed on the crack faces. The
tractions are assumed to act concentrically which allows the solutions to be used as the Green's function
for the analysis of a wedge under general distribution of traction. The solution is accomplished by
employing the Mellin transform. The problem of perfectly bonded wedges is analyzed as a special case
of the crack problem by setting the coordinates of the crack tips equal. The full ®eld solution is
obtained for stress components and analytical relations are given for the strength of singularity at the
apex. In the presence of an interfacial crack, we will describe an exact analytical technique for extracting
the singular integral equation from the boundary condition prescribed on the crack faces in the case of
wedges with equal apex angles. This singular integral equation will then be solved analytically and the
results together with the stress intensity factors at the crack tips will be plotted. Comparing results of
special cases, with those published in the literature shows a complete agreement. However, when the
crack tip coincides with the wedge apex, a singularity of the order unity has been detected.

2. Formulation and problem solution

A bi-material wedge composed of two bonded isotropic wedges with apex angles y1 and y2, shear
moduli m1 and m2 and in®nite length in the direction perpendicular to the plane of the wedge is
considered as shown in Fig. 1. Because of imperfect bonding, a crack exists along the common edge.
Choosing the common edge as the reference axis for de®ning the coordinate y, the crack lies on the line
y � 0 between the radii r=a and r=b. The condition of antiplane shear deformation is imposed on the
composite wedge and traction-traction boundary conditions occur on the edges of the composite wedge;
however, on the faces of the crack the traction-free condition is applied. In such conditions, the only
non-zero displacement component is the out-of-plane component, W, which is a function of in-plane
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coordinates r and y. Therefore, the nonvanishing stress components are trz�r, y� and tyz�r, y�. The
constitutive equations for isotropic materials undergoing antiplane deformation reduce to

tkrz � mk
@Wk

@r

tkyz �
mk
r

@Wk

@y
, k � 1, 2 �1�

for each of the two wedges denoted by superscripts or subscripts k = 1, 2. In the absence of body
forces, by making use of (1), the equilibrium equation in terms of displacement appears as

r2Wk � 0, k � 1, 2 �2�
The di�erential equations (2) must be solved under the following boundary conditions:

t1yz�r, y1� � Pd�rÿ h� �3�

t2yz�r,ÿ y2� � Pd�rÿ h� �4�

W1�r, 0� �W2�r, 0�, 0E rE a, bE r<1 �5�

t1yz�r, 0� � t2yz�r, 0� �6�

t1yz�r, 0� � t2yz�r, 0� � 0, aE rE b �7�
In relations (3) and (4), d denotes the Dirac-Delta function. It is worth mentioning that the choice of
these two boundary conditions, leads to the Green's function solution for the problem. Also, in eqns (3)
and (4), h is the location of the application of the concentrated tractions which may vary from zero to
in®nity. Without loss of generality of the problem, here we suppose that hebea.

Fig. 1. Schematic view of a bi-material wedge with an interface crack.
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The solution to this problem is well accomplished by means of the in®nite Mellin transformation,
which is de®ned as

M
�
W�r, y�, S� �W ��S, y� �

�1
0

rSÿ1W�r, y� dr �8�

where S is a complex transform parameter. The inversion of this transformation is represented by

Mÿ1
�
W ��S, y�, r� �W�r, y� � 1

2pi

�C�i1
Cÿi1

rÿSW ��S, y� dS �9�

The application of the Mellin transform in conjunction with integration by parts on (2) yields

d2W �
k

dy2
� S2W �

k�S, y� � 0, k � 1, 2 �10�

provided that

lim
r40

�
rS�1

@Wk

@r
� rSWk�r, y�

�
� 0, k � 1, 2 �11�

The condition (11) speci®es the strip of regularity which is the range of proper values for the real
quantity C in the inversion formula (9). The solution to eqn (10) is readily known to be

W �
k�S, y� � Ak�S� sin �Sy� � Bk�S� cos �Sy�, k � 1, 2 �12�

Taking the Mellin transform from the boundary conditions which are prescribed on the whole
boundary, i.e., (3), (4) and (6) and applying the resultant relations with the aid of the second of eqns (1)
on eqn (12) lead to the relations between the coe�cients Ak and Bk as follows:

B1�S� � A1�S� cot �Sy1 � ÿ PhS

m1S sin �Sy1�

B2�S� � ÿA2�S� cot �Sy2� � PhS

m2S sin �Sy2�

A2�S� � m1
m2

A1�S� �13�

Making it possible to apply the boundary conditions (5) and (7), the following unknown function may
be de®ned:

f�r� � @

@r

�
W1�r, 0� ÿW2�r, 0�

� �14�

With this de®nition, the condition of continuity of displacements outside the crack, eqn (5), becomes

f�r� � 0, 0E rE a, bE r<1 �15�

Also, the single-valuedness condition of displacements requires that
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�b
a

f�r� dr � 0 �16�

Applying now the inversion formula (9) on (12), the solution may be obtained as

Wk�r, y� � 1

2pi

�C�i1
Cÿi1

rÿS
ÿ
Ak sin �Sy� � Bk cos �Sy�

�
dS, k � 1, 2 �17�

Substituting (17) into (14), taking the Mellin transform from both sides of the resultant equation and
using the boundary condition (15), in conjunction with the use of eqn (13), lead to the relation for the
determination of A1 in terms of f(r ) as follows:

A1�S� � m2
S
�
m2 cot �Sy1� � m1 cot �Sy2�

�"ÿ �b
a

f�v�vS dv� PhS
�

1

m1 sin �Sy1 � �
1

m2 sin �Sy2 �
�#

�18�

Applying the second of eqns (1) with k = 1 on (17), together with the use of the ®rst of eqns (13) and
eqn (18), we may obtain

rt1yz�r, y� �
1

2pi

�C�i1
Cÿi1

P

�
h

r

�S�
sin

�
S�y1 ÿ y��� sin

�
S�y� y2�

�� �Rÿ 1� sin �Sy2� cos �Sy�	
R cos �Sy1 � sin �Sy2� � sin �Sy1� cos �Sy2� d

S

ÿ 1

2pi

�C�i1
Cÿi1

�b
a

m2
�
v

r

�S

f�v� sin
�
S�y1 ÿ y�� sin �Sy2�

R cos �Sy1� sin �Sy2� � sin �Sy1 � cos �Sy2� dv dS

�19�

in which R is de®ned as

R � m2
m1

�20�

The ®rst integral in (19) is the solution of a bi-material wedge composed of two isotropic wedges
bonded together along a common edge without any crack on the interfacial region (a = b which implies
that no crack exists and sets the second integral in (19) equal to zero). The equation for the poles is
obtained by putting the denominator of the integrand in (19) equal to zero:

R cos �Sny1 � sin �Sny2� � sin �Sny1� cos �Sny2� � 0 �21�

or in a simpler form:

tan �Sny1� cot �Sny2� � ÿR �22�

Eqn (22) has not been solved analytically in general, but it appears to have symmetric real roots 2Sn

with respect to imaginary axis of the complex plane. Moreover, it should be possible to show that the
roots are simple poles of the integrands of (19). On the other hand, from the condition (11) and the
requirement that the expression for strain energy ought to be integrable in the vicinity of the wedge
apex, the strip of regularity becomes jCj< S1, where S1 is the least of the poles Sn.
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3. Analysis of a bi-material wedge with perfect bonding along the interface

As mentioned above, letting a = b in (19) we may obtain the solution of the perfect bonding problem
of a bi-material wedge. To ®nd the stress ®eld, contour integration should be used. The integrand is a
meromorphic function in S and two di�erent regions should be considered which are: rEh and reh.
The choice of contour is subjected to the requirement that the integrand should approach zero as
jSj41. Thus, in the region rEh, the appropriate contour of integration is a semi-circular arc which
engulfs the second and third quadrants of complex S-plane. However, in the region reh, a contour
must be chosen which contains the ®rst and fourth quadrants of complex S-plane. By utilizing the
residue theorem, we obtain the stress ®eld

t1yz�r, y� �
P

h�Ry1 � y2 �
X
n

�
r

h

�Snÿ1 sin
�
Sn�y1 ÿ y��� sin

�
Sn�y� y2 �

�� �Rÿ 1� sin �Sny2 � cos �Sny�
sin �Sny1 � sin �Sny2 �

�
1� l cot2 �Sny1�

� , rEh

t1yz�r, y� �
P

h�Ry1 � y2 �
X
n

�
h

r

�Sn�1 sin
�
Sn�y1 ÿ y��� sin

�
Sn�y� y2 �

�� �Rÿ 1� sin �Sny2 � cos �Sny�
sin �Sny1 � sin �Sny2 �

�
1� l cot2 �Sny1 �

� , reh �23�

in which

l � R�y1 � Ry2�
Ry1 � y2

�24�

Similar relations may be derived for the stress component trz and also the displacement ®eld, which are
not given here for the sake of brevity. Moreover, corresponding relations may be written for the other
wedge designated by sub/superscript 2. The ®rst relation of (23) shows a strength of geometric
singularity of

lS � 1ÿ S1 �25�
at the wedge apex. As mentioned before, S1 is the least of the poles Sn.

In the special case, where the apex angles of the two wedges are equal (y1 � y2 � a), we obtain from the
equation of poles (21) two series of poles which are: Sn � �np=a� and Sn � ��2n� 1�p=2a� �n � 0,1, 2, . . .�.
Applying the ®rst set, (23) give nothing other than zero and with the second set, we obtain

t1yz�r, y� �
P

ha

X1
n�0
� ÿ 1�n

�
r

h

� �2n�1�p
2a ÿ1

cos

� �2n� 1�py
2a

�
, rEh

t1yz�r, y� �
P

ha

X1
n�0
� ÿ 1�n

�
h

r

� �2n�1�p
2a �1

cos

� �2n� 1�py
2a

�
, reh �26�

It may be observed that eqns (26) are independent of material property and thus, for equal shear moduli
(m1 � m2), the same results are obtained, too. Therefore, these results should be obtained by analyzing an
isotropic wedge with apex angle 2a. This analysis has already been carried out by Kargarnovin et al. (1997)
and we may obtain the same results as (26) by letting a41 and h1 � h2 and converting a4 2a and y4 yÿ
a in the traction±traction case. From (26), it is seen that the stress ®eld is bounded in a bi-material wedge with
0 < a< �p=2�, whereas in a wedge with �p=2� < a < p, we have a strength of singularity of
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lS � 1ÿ p
2a

�27�

at the wedge apex. Letting a � p, we encounter the antiplane problem of an edge crack in a composite wedge
and we obtain a singularity of the order 1/2, which is the case for an edge crack.

4. Analysis of a bi-material wedge with an interfacial crack

Existence of an interfacial crack, brings the second integral in (19) into account. To obtain the stress
®eld, contour integration should be carried out. Both the integrands in (19) are meromorphic functions
in S and four distinct regions of 0E r E a, a E rE b, bE rE h and re h should be recognized. Since
we need only the region aErEb for applying the boundary condition (7), we may carry out the contour
integration solely in this zone. For this reason, for the ®rst integral in (19), we complete the contour of
integration by a semi-circular arc to include the negative part of the real axis, Re (S ) < 0. For the
second integral in (19), after changing the order of integration we must break the limits of the integral
in [a, b ] into regions [a, r ] and [r, b ]. Then, for the integral in [a, r ] we complete the contour of
integration by a semi-circular arc to include the positive part of the real axis, Re (S ) > 0, however, for
the integral in [r, b ] a semi-circular arc containing the negative part of the real axis, Re(S ) < 0, must be
considered. Since the integrands in (19) vanish as jSj41, by utilizing the residue theorem, we obtain

rt1yz�r, y� �
1

Ry1 � y2

264X
n

P

�
r

h

�Sn sin
�
Sn�y1 ÿ y��� sin

�
Sn�y� y2�

�� �Rÿ 1� sin �Sny2 � cos �Sny�
sin �Sny1� sin �Sny2�

�
1� l cot2 �Sny1�

�

ÿ
X
n

�r
a

m2f�v�
�
v

r

�Sn

sin
�
Sn�y1 ÿ y��

sin �Sny1�
�
1� l cot2 �Sny1�

� dv�
X
n

�b
r

m2f�v�
�
r

v

�Sn

sin
�
Sn�y1 ÿ y��

sin �Sny1�
�
1� l cot2 �Sny1 �

� dv

375
, aErEb

�28�
in which l is de®ned by the same relation (24).

Now, we apply the boundary condition (7) on (28) to obtain

X
n

�r
a

�
v

r

�Sn

f�v� dv
1� l cot2 �Sny1 � ÿ

X
n

�b
r

�
r

v

�Sn

f�v� dv
1� l cot2 �Sny1 � �

P

m2

X
n

�
r

h

�Sn�
sin �Sny1 � � R sin �Sny2 �

�
sin �Sny1 � sin �Sny2 �

�
1� l cot2 �Sny1 �

� , aErEb �29�

This is the basic relation for the derivation of the singular integral equation.

5. Derivation of the singular integral equation in the case yyy1 � yyy2 � aaa

In this case, the equation of the poles (21) reduces to

sin �Sna� cos �Sna� � 0 �30�
which gives two sets of poles: Sn � �np=a� and Sn � �np=a� � �p=2a� �n � 0, 1, 2, 3, . . .�. Application of
the ®rst set, Sn � �np=a�, in (29) gives nothing other than zero. Thus, applying Sn � �np=a� � �p=2a� in
(29) and changing the order of summation and integration, yields
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�r
a

�
v

r

�p
2a X1

n�0

�
v

r

�np
a
f�v� dvÿ

�b
r

�
r

v

�p
2a X1

n�0

�
r

v

�np
a
f�v� dv � P�1� R�

m2

�
r

h

�p
2a X1

n�0
� ÿ 1�n

�
r

h

�np
a
, a E r E b �31�

In the ®rst integral of (31), we see that v < r and in the second integral v > r. Also, we have supposed
that heb. Therefore, we observe that v/r, r/v and r/h are less than unity and we may utilize the
following series expansion formulas:X1

n�0
xn � 1

1ÿ x
,
X1
n�0
� ÿ 1�nxn � 1

1� x
; jxj < 1 �32�

to obtain

�r
a

�
v

r

�g=2 rg

vg ÿ rg
f�v� dv�

�b
r

�
r

v

�g=2 vg

vg ÿ rg
f�v� dv � ÿP�1� R�

m2

�
r

h

�g=2

1�
�
r

h

�g , aE rE b �33�

in which

g � p
a

�34�

It is seen that the integrands of the ®rst and second integrals in (33) are the same and thus, we can
join both integrals to arrive at a single integral in the [a, b ] region:

�b
a

rg=2vg=2

vg ÿ rg
f�v� dv � ÿP�1� R�

m2

�
r

h

�g=2

1�
�
r

h

�g , aErEb �35�

If we now make the following change in variables:

t � vg, x � rg, c � ag, d � bg, e � hg �36�
and de®ne

f�t� � t�1=g�ÿ�1=2�f �t1=g � �37�
eqn (35) becomes�d

c

f�t� dt
tÿ x

� ÿgm1 � m2
m1m2

P

���
e
p
e� x

; cExEd �38�

Eqn (38) has to be solved as it is subjected to the condition (16), which in the light of (36) and (37)
changes form to�d

c

f�t�
t1=2

dt � 0 �39�

Eqns (38) and (39) are very similar in form with those obtained by Erdogan and Gupta (1975). Here, we
have solved it analytically. The general solution of eqn (38) which has integrable singularities at the ends
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c and d may be written as (Muskhelishvili, 1977)

f�x� � ��xÿ c� �dÿ x��ÿ1=2"Bÿ 1

p2

�d
c

��tÿ c� �dÿ t�
�1=2 P�t�

tÿ x
dt

#
; cExEd �40�

in which

P�t� � ÿgm1 � m2
m1m2

P

���
e
p
e� t

�41�

To obtain f�x�, we must compute the integral

I �
�d
c

����������������������������
�tÿ c� �dÿ t�

p
dt

�tÿ x� �t� e� �42�

The term x in (42) should be regarded as a constant with respect to the integration variable, t. To
compute this integral, we may use the following change in variable:����������������������������

�tÿ c� �dÿ t�
p

� �tÿ c�u �43�
Applying this change of variable on (42), we obtain

I � 2�dÿ c�2
�cÿ x� �c� e�

�1
0

u2 du

�u2 � 1� �u2 ÿm2� �u2 � l2� �44�

where

m2 � dÿ x

xÿ c

l2 � d� e

c� e
�45�

Now, it is possible to compute the integral in (44) by the method of partial fraction expansion.
Substituting the results into (40) and facilitating yields

f�x� �
"
Bÿ P

���
e
p
mea
� P

�������������������������������
e�c� e� �d� e�

p
mea�x� e�

#�
�xÿ c� �dÿ x��ÿ1=2, cExEd �46�

in which me � �m1m2=�m1 � m2��.
The constant B should be obtained by applying the condition (39) on (46), which gives

B � P
���
e
p
mea

�
1ÿ

�����������������������������
�c� e� �d� e�

p I1
I2

�
�47�

where

I1 �
�d
c

dt

�t� e�
������������������������������
t�tÿ c� �dÿ t�

p
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I2 �
�d
c

dt������������������������������
t�tÿ c� �dÿ t�

p �48�

To carry out the integrations in (48), we make the successive changes in variables:

t � �dÿ c�u2 � c

u � cos y �49�
and then after substituting the results together with (47) into (46), we arrive at

f�x� � P

mea

�������������������������������
e�c� e� �d� e�

p
26664 1

x� e
ÿ 1

d� e

P
�

k, n,
p
2

�
K

�
k,

p
2

�
37775��xÿ c� �dÿ x��ÿ1=2; cExEd �50�

where

k2 � dÿ c

d

n � ÿdÿ c

d� e
�51�

and K�k, p=2� and P�k, n, p=2� are the complete elliptic integrals of the ®rst and third kinds, respectively
(Spiegel, 1968).

Now, with the aid of (36) and (37), we may obtain f(r ) as follows:

f�r� � P

mea

�����������������������������������������
hg�ag � hg� �bg � hg �

p
26664 1

rg � hg
ÿ 1

bg � hg

P
�
k, n,

p
2

�
K

�
k,

p
2

�
37775 r�g=2�ÿ1

��rg ÿ ag��bg ÿ rg�
�ÿ1=2

;

aErEb �52�

where

k2 � bg ÿ ag

bg
, n � ÿb

g ÿ ag

bg � hg
�53�

If the location of application of the concentrated traction is far enough from the crack tips (h� b),
from the second of (53) we see that n4 0. Since

P
�
k, 0,

p
n

�
� K

�
k,

p
2

�
�54�

we will have from (52) that f �r�4 0. On the other hand, if the crack tip, r=a, coincides with the wedge
apex �a � 0�, then a singularity of the order unity is observed at the apex.

The stress intensity factors may be de®ned as was done by Erdogan (1966) and Erdogan and Gupta
(1975):
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Fig. 2. Variations of f(r ) as a function of r=a0 �aErEb�.

Fig. 3. Variations of the stress intensity factors as functions of relative crack distance.
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K�a� � lim
r4a

�
2�aÿ r��1=2t1yz�r, 0� � lim

r4a

m1m2
m1 � m2

�
2�rÿ a��1=2f�r�

K�b� � lim
r4b

�
2�rÿ b�

�1=2
t1yz�r, 0� � ÿ lim

r4b

m1m2
m1 � m2

�
2�bÿ r�

�1=2
f�r� �55�

In order to take the location and the length of the crack into account, we may write the distance of the
centre of the crack with respect to the apex and the crack length in terms of the crack tips coordinates

c0 � a� b

2

a0 � bÿ a

2
�56�

Substituting (56) into (52), (53) and (55), we may show variations of the density function f(r ) and the
stress intensity factors in appropriate graphs. Fig. 2 shows the variation of mef �r�a0=P as a function of
r=a0 in constant c0=a0 and h=a0. In this particular example a � p=2, c0=a0 � 2 and h=a0 � 4. Fig. 3
shows the variation of the stress intensity factors as functions of relative crack distance, c0=a0, for a �
p=2 and h=a0 � 4. It is observed that K�a�4 0, K�b�4 0 as c0=a041. On the other hand, K�a�41
as c0=a04 1 (or a4 0), whereas K(b ) is ®nite for c0=a0 � 1 (or a = 0).
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